skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ayalew, Mentewab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract BackgroundExposure to aminoglycosides, a class of potent bactericidal antibiotics naturally produced by soil microorganisms and commonly used in agriculture, has the potential to cause shifts in the population dynamics of microorganisms that impact plant and soil health. In particular, aminoglycoside exposure could result in alterations of the soil and plant root-associated bacterial species diversity and richness due to their potent inhibitory action on microbial growth, the creation of selective conditions for the proliferation of antibiotic-resistant bacteria, or a reduction in the ability to suppress soil pathogens. Previous studies have attempted to understand the relationship between aminoglycoside exposure and the plant-associated microbiota with varying results. Thus, this systematic review aims to survey all relevant published data to answer the question, “What is the impact of aminoglycoside exposure on the soil and plant root-associated microbiota?” MethodsWe searched 5 academic databases and 1 specialist organization database for scientific journal publications written in any language. Articles were included based on the criteria described in Coates et al., 2022. Included studies were subject to critical appraisal using the CEE Critical Appraisal Tool Version 0.2 (Prototype) to evaluate their susceptibility to confounding factors, misclassification bias, selection bias, attrition bias, reporting bias and analysis bias. Studies deemed to be high risk based on critical appraisal results were excluded from further analysis. Descriptive data analysis was performed for studies considered low or unclear for risk of bias. Meta-analyses were conducted for antibiotic resistance and microbial diversity. Review findingsOut of 8370 screened records, 50 articles fulfilled the search criteria, and from these, 13 studies were included in meta-analysis. Most studies investigated the impact of aminoglycoside exposure on soil microbiota (93%) in a laboratory setting (62%), primarily from the United States (32%), China (24%), France, Switzerland and Germany (8%). A limited number of studies investigated the impact of aminoglycoside exposure on disease suppression, so it was excluded from meta-analysis. Therefore, our synthesis primarily details the impact of aminoglycoside exposure on the microbial diversity and antibiotic resistance of the soil microbiota. Overall, exposure to aminoglycosides did not result in a significant change in the microbial diversity. However, soil use, pH, and type of aminoglycoside used could be potential modifiers. Additionally, we observed an average 7% of the microbial population exhibiting resistance to aminoglycosides, with the relationship between the exposure concentration and the selection concentration emerging as a potential modifier. ConclusionsCurrent research is limited by gaps in understanding the relationship between aminoglycoside exposure, microbial community dynamics, and disease suppression, as well as by insufficient data on less-studied aminoglycosides and key confounding factors. Current research also suggests a potential relationship between antibiotic concentrations used for exposure and selection of resistant bacteria. These findings emphasize the need for informed antibiotic management policies and rigorous, targeted research to better understand the relationship between soil factors and antibiotic concentrations used on the impact of aminoglycosides on soil microbiota. 
    more » « less
  2. Synopsis Plants are fundamental to life, providing oxygen, food, and climate regulation, while also offering solutions to global challenges. Integrating plant biology into an undergraduate curriculum, while supporting and nurturing students’ career interests present both opportunities and challenges. Undergraduate biology education often overlooks plants due to limited student interest and a strong focus on health professions, particularly among women and underrepresented minorities. Here, we describe how plants are incorporated in the Biology curriculum at Spelman College, a women’s liberal arts college and a Historically Black College and University where Biology is a popular major. The department has successfully embedded plant biology across its skills and competency-based curriculum, from the foundational introductory sequence to upper-level electives and research experiences. Students learn core biological concepts in the introductory core curriculum, consisting of four courses progressing from ecological to molecular levels, where plant-related content is integrated through inquiry driven, hands-on activities or field trips. In upper-level electives and research-based courses, faculty offer a robust program in plant biology that enables deeper understanding and integration across disciplines as they address real world problems that intersect with students’ diverse interests. Survey data indicate that students perceive a balanced exposure to plants and other organisms in introductory courses and recognize the importance of plants for understanding core biological principles. Although this exposure does not significantly shift their primary career interest in medicine, it contributes to a broad biology education, skill development, and an increased interest in research. 
    more » « less
  3. SUMMARY Plants are essential for human survival. Over the past three decades, work with the reference plantArabidopsis thalianahas significantly advanced plant biology research. One key event was the sequencing of its genome 25 years ago, which fostered many subsequent research technologies and datasets. Arabidopsis has been instrumental in elucidating plant‐specific aspects of biology, developing research tools, and translating findings to crop improvement. It not only serves as a model for understanding plant biology and but also biology in other fields, with discoveries in Arabidopsis also having led to applications in human health, including insights into immunity, protein degradation, and circadian rhythms. Arabidopsis research has also fostered the development of tools useful for the wider biological research community, such as optogenetic systems and auxin‐based degrons. This 4th Multinational Arabidopsis Steering Committee Roadmap outlines future directions, with emphasis on computational approaches, research support, translation to crops, conference accessibility, coordinated research efforts, climate change mitigation, sustainable production, and fundamental research. Arabidopsis will remain a nexus for discovery, innovation, and application, driving advances in both plant and human biology to the year 2030, and beyond. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  4. Abstract BackgroundAminoglycosides are potent bactericidal antibiotics naturally produced by soil microorganisms and are commonly used in agriculture. Exposure to these antibiotics has the potential to cause shifts in the microorganisms that impact plant health. The systematic review described in this protocol will compile and synthesize literature on soil and plant root-associated microbiota, with special attention to aminoglycoside exposure. The systematic review should provide insight into how the soil and plant microbiota are impacted by aminoglycoside exposure with specific attention to the changes in the overall species richness and diversity (microbial composition), changes of the resistome (i.e. the changes in the quantification of resistance genes), and maintenance of plant health through suppression of pathogenic bacteria. Moreover, the proposed contribution will provide comprehensive information about data available to guide future primary research studies. This systematic review protocol is based on the question, “What is the impact of aminoglycoside exposure on the soil and plant root-associated microbiota?”. MethodsA boolean search of academic databases and specific websites will be used to identify research articles, conference presentations and grey literature meeting the search criteria. All search results will be compiled and duplicates removed before title and abstract screening. Two reviewers will screen all the included titles and abstracts using a set of predefined inclusion criteria. Full-texts of all titles and abstracts meeting the eligibility criteria will be screened independently by two reviewers. Inclusion criteria will describe the eligible soil and plant root-associated microbiome populations of interest and eligible aminoglycosides constituting our exposure. Study validity will be evaluated using the CEE Critical Appraisal Tool Version 0.2 (Prototype) to evaluate the risk of bias in publications. Data from studies with a low risk of bias will be extracted and compiled into a narrative synthesis and summarized into tables and figures. If sufficient evidence is available, findings will be used to perform a meta-analysis. 
    more » « less
  5. null (Ed.)
    The integration of biology with mathematics and computer science mandates the training of students capable of comfortably navigating among these fields. We address this formidable pedagogical challenge with the creation of transdisciplinary modules that guide students toward solving realistic problems with methods from different disciplines. Knowledge is gradually integrated as the same topic is revisited in biology, mathematics, and computer science courses. We illustrate this process with a module on the homeostasis and dynamic regulation of red blood cell production, which was first implemented in an introductory biology course and will be revisited in the mathematics and computer science curricula. 
    more » « less
  6. Abstract Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration. Engaging students and the general public in the wonder of plants, and science in general, requires renewed efforts that take advantage of advances in technology and new models of funding and knowledge dissemination. In November 2018, funded by the National Science Foundation through the Arabidopsis Research and Training for the 21st century (ART 21) research coordination network, a symposium and workshop were held that included a diverse panel of students, scientists, educators, and administrators from across the US. The purpose of the workshop was to re‐envision how outreach programs are funded, evaluated, acknowledged, and shared within the plant science community. One key objective was to generate a roadmap for future efforts. We hope that this document will serve as such, by providing a comprehensive resource for students and young faculty interested in developing effective outreach programs. We also anticipate that this document will guide the formation of community partnerships to scale up currently successful outreach programs, and lead to the design of future programs that effectively engage with a more diverse student body and citizenry. 
    more » « less